
Journal of Statistical Physics, Vol. 54, Nos. 3/4, 1989 

Behavior of General One-Dimensional 
Diffusion Processes 

Francois Delyon 1 and Jean-Francois Lueiani I 

Received May 23, 1988 

We develop simple rigorous techniques to estimate the behavior of general one- 
dimensional diffusion processes. Any one-dimensional diffusion process (with 
drift) can be mapped onto a symmetric diffusion through an explicit change of 
variable. For such processes we can estimate explicitly the diffusion exponent, 
the recurrence properties, and the large fluctuations. In a second part, we apply 
these results to different models (including the Sinai" random walk: diffusion in a 
random drift) and we show how the main features of the diffusion can be readily 
handled. 

KEY WORDS:  Diffusion processes; random walks; random walks in random 
environment. 

1. I N T R O D U C T I O N  

In this paper we consider general stationary one-dimensional diffusion 
processes on R defined by the stochastic equation 

d X  = a( X)  . dB + #( X)  dt (1) 

where B is the Brownian motion and a is a space-dependent diffusion coef- 
ficient and # is the drift. If we denote P(O, x, t) the transition probability 
from 0 to x within time t, the stochastic equation (1) leads to the differen- 
tial equation 

1/2 ~2/~x2 a2P -- O/Ox # P  = OP/Ot (2) 
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Remark.  For physicists, Eq. (2) is the It6 version of (1), while the 
Stratonovitch one would read 

1/20/c3x a ~?/c3x a P -  c~/c?x liP = 3 P/•t (3) 

The choice of a version depends on the underlying physical situation. For 
instance, if li = 0, the It6 version in surely relevant when physically E(X(t)) 
is constant. 

We will provide some simple rigorous results in order to obtain the 
physical behavior of (2) depending on the shape of a and ft. This behavior 
can usually be characterized by: 

1. The diffusion exponent dw. This is the exponent such that Ixt[ a" 
goes like t. 

2. The asymptotic behavior (for large t) of P(O, O, t): the probability 
(with the above notations) to be at the origin at time t. 

3. The asymptotic behavior (for large t) of R(a, O, t): the probability 
to be for the first time at 0 at time t starting from a [-in the discrete case, 
one can define R(0, 0, t), which is the distribution of recurrence times]. 

4. The large fluctuations as given by the tail of P(0, x, t) for large x. 

It is well known (l) that any one-dimensional diffusion process (even 
including a deterministic drift) can be mapped onto an It6 diffusion 
through a simple change of variable (see Section 3.3 for an example). Thus, 
in Section 2 rigorous bounds on these quantities will be established for 
Eq. (2) with li = 0. Our approach in this part is similar to that of ref. 2. In 
Section 3 we will show with more heuristic arguments how these bounds 
provide easily the behavior of the diffusion. We will study several examples. 

The case where a is a random ergodic variable (and li = 0) has already 

been studied in ref. 3 for arbitrary dimension: it is proved that X( t ) / x / t  
converges in law to a Gaussian variable. In ref. 4 the same result is 
obtained for a one-dimensional discrete equivalent of (1). In either one- 
dimensional case one gets the exact value of the Gaussian variable which 
provides an effective diffusion coefficient ae~: a ~  2= E(a -2) (for higher 
dimension, the Stratonovitch case is difficult and has already been con- 
sidered in the random case in ref. 3). We are interested in more general 
and #. This concerns as well the deterministic cases where a is 
inhomogeneous (for instance, a behaves like a power at infinity) as random 
cases [E(a -2) can be infinite] where we can study typical samples of a. 
The first case occurs when one considers chaotic dynamical systems as 
diffusion processes with a speed going to 0 near the stability regions. In the 
random cases, contrary to previous works, (3-s) we do not attempt to get 
the convergence in law to some scaled process, but, as we can study typical 
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samples, we can derive the behavior of some rare events (like the renewal 
events). As a last example, we consider random walks in random 
environments (5-7) (i.e., diffusion with random drifts). 

The discrete equivalents of (2) and (3), are respectively, for # = 0, 

dPi/dt = -2~Pe + 1/22~+ i Pi+ 1 + 1/22i_ ~ P~ 1 (2bis) 

dP~/dt = - 1/2(2i + 2;+ 1)Pi + 1/22i+ ~ Pi+ ~ + 1/22iP~_ 1 (3bis) 

where 2i are the local transition rates. The discrete models are not studied 
there, but similar techniques could be used. In particular, the propositions 
of Section 2 can be readily translated. 

2. G E N E R A L  RESULTS 

In this part, we assume that the diffusion process has been mapped 
onto an It6 diffusion (# = 0) through an appropriate change of variable. 
We are interested in diffusion without boundary points, so we suppose our 
processes are defined all over R. This requires that a - 2  is locally integrable. 
Furthermore, (1) makes sense only if a is Lipshitz, but (2) always defines a 
diffusion. Thus, in the following we will consider general diffusion 
processes: symmetric Feller processes with absolutely continuous speed 
measure. (1~ In fact, one can extend readily our results in the case where the 
diffusion has finite endpoints provided that these endpoints are open [b is 
open if S b [ b -  x[ O'--2(X) d x  = Go 3. This case can occur when the It6 process 
comes from a process with drift defined all over R: the change of variable 
can map R onto a finite interval. 

2.1. Behavior  at  In f in i ty  

Let us first recall some features related to the behavior of o- at infinity. 
If a -2 is integrable, then there exists a finite invariant measure r -2 dx. 
Furthermore,  in the It6 case the diffusion needs always an infinite time to 
reach + Go or - Go. An odd behavior occurs when Ix] a -z  is integrable near 
0o: a particle comes from o0 within a finite time. The infinite boundary 
point is then called entrance. Notice that in the Stratonovitch case the 
situation is quite different, since there never exists an invariant measure 
except if a particle can reach the infinity within a finite time (o - - j  
integrable) in which case one has to specify suitable boundary conditions 
at infinity (this kind of diffusion is in fact easily mapped onto the Brownian 
motion on a finite interval). 
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2.2. Dif fusion Veloc i ty  

The next physical property is the mean diffusion velocity, which is 
often related to a diffusion exponent dw. Let us define 

M(x) = 2 dy dz ~-2(z) (4) 

One easily checks that M ( 0 ) = 0 ;  M(x)  increases as Ix1 increases and is 
unbounded even if there exists an invariant measure. Furthermore 
M(Z,)  - t is a martingale in the following sense(I): if t* is any Markovian 
time such that E(t*) is finite and M(X,) is bounded for t < t*, then 

E ( M ( X , , ) )  = E ( t * )  (5)  

since M(X) satisfies (1/2~ 2 02/(~X + ~/~t )[ M(x)  - t ] = O. 
Thus, dw may be fit using (5) with t * =  {first time such that 

M ( X , ) = m } .  For instance, if (7 is such tha t 'M(X)  behaves at ~ as [XI a, 
then dw = a in the sense that the mean time to reach X behaves like [XI a. 
On the other hand, we would like to know the value of E([X,I) and we 
could expect that it behaves like t 1/dw: this is implicit in the definition of dw 
in the physical literature. This is not generally true, even if cr is a "good" 
function of x (behaves like a power, for instance). In Section 2.5 we 
estimate E(IX,[); however, at this step one can state the following result: 

Proposition 1. If infinity is not an entrance boundary (kxl~ -2 is 
not integrable at ~ ) ,  then the function M as defined in (4) satisfies 

E ( M ( X , ) )  = t 

ProoL Let us define a family of stopping times tN: 

t~v = Inf(t, first time ~ such that IX,[ = N} 

and let r be the characteristic function of the event  { t  N = t} .  For the sake 
of simplicity, let us assume that tr (and consequently M) is symmetric. 
Then, for all N, (5) holds with t * =  t u. Thus, we have 

E(CNM(X,N)) + E(1 - CN) M(N) = E(tN)  < t (6)  

As N goes to ~ ,  E(tu) goes to t and the first term in (6) goes to E(M(X,)) 
by the monotone convergence theorem. Thus, (6) provides Proposition 1 if 
E ( ( 1 - e u )  M(N)) goes to 0. Let 

M2(x)= 2 fo dY fo M(Z) a -  2(z) dz 
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Then M2(X,)-25 'oM(X,)ds  is a martingale in the same sense that 
M ( X , ) -  t; in particular, 

E(cNM2(Xt~))+E(1--CN)M2(N)=2E(f~NM(X~)ds)<t 2 (7) 

since E(M(Xt) ) < t. Thus, E ( 1 -  CN) < t2/M2(N) and if K(N) = 
M(N)/M2(N) goes to zero as N goes to oo, then we have 

E(M(X,)) = t (8) 

which fits the more usual definition of d w. Let us now discuss the above 
condition and prove 

fo o K(N) goes to zero as N goes to oe ~ ~-2  Ix[ dx = oo (9) 

First, if there exists an invariant measure (i.e., So ~ -2  dx< oo), then the 
proof  is straightforward: for large x, M ( x ) ~  Cfxl and M2(x) behaves like 
C' Ix] if and only if 5o ~r-2 Ix[ dx is finite, else Mz(x) > C'x for any C'. 
Now, if 5o a -2 (x )  dx = 0% then the proof  relies on the following lemma: 

L e m m a .  Let f,  g be positive increasing functions such that f ,  g ~ oo 
as x --+ oo and f ' /g '  --+ 0 as x --, oo, then f i g  goes to zero as x -~ oo. 

This lemma is obvious. We apply this lemma for f =  5o ~-2dx  and 
g=5oa-ZM(x)dx;  thus f g satisfy the hypotheses, since f ' / g ' =  
1/M(x)--, 0 as x--+ oo and consequently fig--+ 0 as x--+ oo. Then, we can 
apply the lemma to S o f  and 5o g to get that M(x)/M2(x) --* O. 

Now, if cr is not symmetric, the proof  has to be readily modified: one 
has to consider separately the two limits at + oe or - 0 %  and provided 
that K goes to 0 on both sides, (8) holds. This ends the proof  of 
Proposition 1. 

Remark. If K does not go to zero at 0% then M(X) ~, IX] and M(X) 
is integrable with respect to the invariant measure. It is not surprising that 
(8) is false in this case and one expects that E(M(X,)) remains bounded. 

2.3. Bounds on Laplace T r a n s f o r m s  

This part  mainly relies on Proposition 2, which is similar to the Kac 
inequalitiesJ 2,s~ Let us now consider the probability P(x, t) to be at x at 
time t (starting from 0 at time t =-0). We will deal with its Laplace trans- 
form P(x, E): 

~(x, E) = P(x, t) e x p ( - E t )  dt (10) 
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Since P(x, t) satisfies Eq. (2), we have 

P(x, E)= ~-2(x) ~2(0) G(0, x, E) (11) 

where G is the kernel of the resolvent (Green function) of the operator 
H =  1/2a 2 8Z/Sx2. The operator H has to be considered as an unbounded 
positive operator in LZ(R, cr -2 dx) and is essentially self-adjoint on C~(R). 
Thus, G is well defined for E >  0. Furthermore, one is often interested in 
the recurrence times: in the case of a random walk on Z, the recurrence 
time (at 0) is defined as the first time t such that X(t)= 0 and X(t ' )~  0 for 
some t ' <  t. For a continuous walks the same definition would be 
meaningless, but  if we are interested in the distribution of large recurrence 
times t we can as well define t* as the first time such that X(t)= 0 starting 
from a (one could also consider the walks starting from - a ;  these two 
definitions may give rise to different laws for recurrence times). Now 
this definition makes sense in the continuous case: t* is the Markovian 
stopping time at 0. Let us set/~+(E) = E(exp -E t* ) :  R+(E) is the Laplace 
transform of R(a, O, t) as defined in the introduction. Similarly, one can 
def ine / ] - (E)  as the Laplace transform of R( - a ,  0, t). 

In order to estimate k + (E) we remark that G(0, X~, E) exp - E t  is a 
(bounded) martingale [formally, it satisfies (1/2~r 2 82/SxZ-8/Ot)f=O], 
thus we have 

G(0, a, E ) =  G(0, X0, E) = E(G(0, Xt., E) exp - E t * ) =  _R+(E) G(O, O, E) 

(12) 

So /~+(E) and P(x, E) are given by G(0, x, E); thus, we have only to 
estimate G(0, x, E). It is well known that there exist two functions j+  and 
j -  satisfying 

( 1/2a 2 c32/~3x 2 - E) j = 0 (13) 

which are respectively in L2([0, + ~ [ , a - 2 d x )  and in L 2 ( ] - ~ , 0 ] ,  
(7" 2 d x ) ,  G can be expressed as 

G(O,x ,E)=j - (O) j+(x ) /W( j+ , j  - )  if x > 0  

= j  (x)j+(O)/W(j+,j  - )  if x~<0 (14) 

where W is the Wronskian of j+  and j - :  W=l/2a2(O)[j-(O)j+'(O) - 
j - ' ( 0 )  j+(0)] .  

Let Mx(X) be defined as M(X) for a diffusion starting at x; then the 
equation Mx(X ) = t has clearly two solutions for any time: one is larger 
than x (say) and the other is smaller. Then the following Proposition 
holds: 
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Proposition 2 (Kac(S)). Let X+(t) and XT(t ) be the distance from 
x of M~(X) = t (respectively larger and smaller than x); then j+ and j -  
satisfy 

x~+ (1/E)/2 < Ij+ (x)/j+'(x)[ < x+ (1/E) 

x x (1 /E ) /2  < I J-  (x)/j-'(x)l < x 2  (1/E) 
(15) 

Proof. In order to simplify the notations, let us prove (15) for x = 0; 
the proof does not depend on this choice. One easily checks that j+ cannot 
vanish (let us now suppose that j+ is positive); then, by (13), j+ is convex 
and thus j+ '  is negative and increases to 0 at + oc. Thus we have 

j (u)=j(O)+ j ' ( y )dy>O 

Thus, 

j ' ( u ) = j ' ( O ) + 2 E I ~ - 2 j ( y ) d y < O  

These inequalities are true for any u>0;  choosing u=X+(1/E) in (16) 
provides the lower bound for (15). Integrating by parts we have 

(18) 

Thus, for the same choice of u, (17) and (18) provide the upper bound of 
the lemma. 

By Eq. (14), the following propositions are direct consequences of 
Proposition 2: 

P r o p o s i t i o n  3. P(0, E) [see Eq. (I0)] satisfies 

X + X : / ( X  + + X - )  < cr2(O) P(O, E) < 2 X + X - / ( X  + + X - )  

Proposition 4. k+(E)  [the Laplace transform of R(O,a,t)] 
satisfies [and similarly R- (E) ]  

1-2a /X+ < R + ( E ) < I - a / X  + + 2E fody fo~-2(z)dz  
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P(x, E) satisfies, for x > O, 

< ~2(x) P(x, E) 

1/x; (1/E) dy~ 
A 

Proposition 5. 

a2(O ) '(O, E) exp l -  2 f: I/X~+ (1/E) dy ] 

a2(x) P(x, E) < a2(0) P(O, E) exp - 

and similarly for x < 0. 

Remark 1. Obviously, as E goes to zero, the third term of the upper 
bound of Proposition 4 becomes negligible if there is no invariant measure. 

Remark 2. In the above propositions, notice that the upper and 
lower bounds are equivalent and thus they should be sufficient for most 
practical problems. Nevertheless, the same techniques (Proposition 2) can 
be extended to higher orders to provide (exponentially fast) converging 
upper and lower bounds. 

2.4. Bounds on P(x, t) 

In this part we use the above propositions to get rough estimates on 
the equivalent time-dependent quantities. In the simplest cases one can 
invert the Laplace transform and get the time dependence of P and R (at 
least for large t) through Tauberian theorems. However, in the general 
case, the following propositions hold: 

Proposit ion 6. P(O, t) satisfies 

P(O, t) < 1/tP(O, l/t) 

e/(1 + e) P(O, 1/t) < f '  P(O, s) ds < eP(O, 1/t) 
Jo 

Proposit ion 7. Let S(t) be the probability that the first 
"recurrence" time is larger than t; then 

fo e/(l+e)et[1-~+(O, 1/t)]< S(s) ds<et[1-1~§ 1/t)] 

Proof. The first upper bound in Proposition 6 relies on the convexity 
on P ensured by the spectral decomposition; then 

P(O, E)= 1/E f~ E exp(- Es) P(O, s) ds 
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E e x p ( - E s )  ds is a normalized measure and applying the Jensen inequality 
we get the first upper bound. The next upper bound in Proposition 6 is 
obvious by restricting the integral in (10) to the interval [0, 1~El. Then, 
notice that P(0, t) is decreasing, as can be seen from the spectral decom- 
position of the operator H. Thus, 

P(O, E) < Io' P(O, s) ds + e x p ( - E t )  P(O, t)/E 

fo < P(O, s) ds [ 1 + e x p ( -  Et)/Et] 

This provides the lower bound of Proposition 6. The proof of 
Proposition 7 is the same, since S(t) is decreasing. 

Remark 1. Notice that in Proposition 6 the first inequality cannot 
be completed by a lower bound for P(0, t): one can find examples where 
P(0, t) decreases faster than this upper bound. 

Remark 2. If the diffusion is limited to a finite interval with open 
boundaries, the function M(x) diverges as x approaches a boundary. One 
easily checks that Propositions 2-7 extend. In this case X + is bounded; 
thus, by Propositions 3 and 6, S'o P(O, s)ds converges as t goes to oe and 
the motion is transient. Furthermore, by Proposition 4,/~ + (E) does not go 
to 1 as E goes to 0, which again proves that the motion is transient and 
provides the probability 1-_R+(0)  to go (starting from 1) to the right 
never crossing the origin. If the It6 diffusion comes from a general diffusion 
(with drift), this remark provides a simple criterion for the recurrence of 
the process. 

2.5. Bounds fo r  E ( IX , I )  

Proposition 1 can be inverted in the following sense: 

Propos i t ion  8. Let X + and X -  be defined as in Proposition 2; if 
infinity is not an entrance boundary (]x[ a 2 is not integrable at ~ ) ,  then 

e/Z(1 + e) X+(t) X-( t ) /[X+(t)  + X -  (t)] 

~< E(fX,]) ~< eX + (t) X (t)/[X + (t) + X -  (t)] 

Multiplying by Ix[ both sides of Eq. (2) and integrating by parts, we get 
formally 

d/dt E(IX, I)= 1/2a2(0)P(O, t) (19) 
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Thus, 

~ t  

E(IX, I ) :  1/2 Jo ~r2(~ P(O, s) ds (20) 

The right-hand side of (20) is estimated in Proposition 6, which provides 
Proposition 8. It remains only to set rigorously Eq, (20). 

Proof of Eq. (20). Let us define f ,(x) as 

Ixl-e/2 if Ix I >e,  X2/2~ if Ixl <~ (21) 

and let Z,(X) be the characteristic function of the interval [ - e ,  e]. We 
choose some t > 0; then, if tN is the stopping time defined in Section 2.2 
(proof of Proposition 1), one has {1~ 

E(f~(Xtu))-E (1/ (2~)f~ua=(X, , )z~(X, , )dr ' )=0 (22) 

since 1/~ X~(x) is the second derivative of f,(x).  We first let N go to m: the 
contribution of the events such that tN< T vanishes if N/M2(N) goes to 
zero as N increases. As in Section 2.2, this occurs as soon as ___ m are 
natural boundaries. In the second step, we let ~ go to zero; there the 
regularity of a2(x) P(x, t) for t > 0 ensures that (22) goes to 

E(IX, I)= 1/2 a2(0)P(0, t')dt' 

This ends the proof of Proposition 8. 

3. APPLICATIONS 

3.1. Dif fusion Speed Behaving As a Power  at Inf ini ty  

We suppose that a 2 ~  [x[ a at both infinities. There are three different 
cases: 

(i) a ~< 1: there is no invariant measure and M ( x ) ~  x 2-~ [x ln(x) if 
a = t ] ;  thus, E(I x,I ) ~ t 1/~2 - a) (t/ln t if a = 1 ). 

(ii) 1 < a ~< 2: there is an invariant measure and infinity is a natural 
boundary, M(x) ~ x, and thus E(IX, I) ~ t. 

(iii) 2 < a: there is an invariant measure and infinity is an entrance 
boundary, M ( x ) ~ x ,  but E(LX, I) is bounded [it should converge to 
~ lyl a -2 ( y )  d y / ~  a 2(y) dy]. 
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If a -~- is exactly a power law (at least, say, for Ixl > 1), the asymptotic 
solution is 

P(x, t) ,~ x-al t l  a/2- ~ exp( - cx 2 - a/t) (23) 

This can be justified by direct spectral analysis involving Bessel functions. 
This simple case supports the physical idea that for arbitrary a 2, P(x, t) 
looks like a-2P(O, t) multiplied by an exponential cutoff. P(0, t) should be 
defined by the normalization condition: 

f + ~ P(x, t) dx = 1 ~ ~o ~* a-2(x)  dx a2(O) P(O, t) 
- -  c ~ 3  

(24) 

where X* satisfying M ( X * ) =  t is the typical abcissa reached within time t. 
The cutoff term can be estimate using Proposition 4. First, one easily 
checks that X + (E) behaves like a/E 1/2 provided infinity is a natural boun- 
dary (a < 2); otherwise we have 

x+(E) ~-2(x) dx~l/F~ 

Thus, in the former case the cutoff of the Laplace transform is 
e x p ( - E  m ~ a 1 dx). Since the inverse Laplace transform of e x p ( - E m C )  
is exp(-2C/ t ) ,  one expects that 

P(x, t ) ~ a - 2 ( x )  P(O, t)exp l - 2 1 o a  l(y) dy/t] (25) 

This result fits (10) through Laplace transform. In the latter case, 
1/X+(1/E) is integrable; thus, there is no cutoff term (which clarifies the 
restrictions in Section 2.2) and the invariant measure is reached uniformly 
all over R: 

P(x, t) ~ a-Z(x) (26) 

Remark. In the previous estimates we have implicitly assumed that a 
is regular (without large oscillations); let us now the opposite case, where 
the fluctuations of a rule the behavior of the diffusion. 

3.2. R a n d o m  Di f fus ion  Speed 

Let us first consider the "regular" case where the random variable a -2  
can be averaged. In ref. 3, it is proved that X(t)/~/t  converges in law to a 
Gaussian variable with variance ar E(a-2). Our estimates agree with 
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this result, but our approach is quite different: for instance, Section 2.2 
allows us to compute the moments of X(t) (which is not strictly speaking 
the case in ref. 3). For example, M(x) /x  2 goes to a;~ 2 by the ergodic 
theorem and thus E(X2(t)) goes almost surely to ~r~frt. In the same way one 
can estimate the higher moments. Furthermore, P(x, E) can be easily 
estimated, providing large fluctuations yet Gaussian. 

Now, let us deal with the nonaveraging case. Let us assume that 
a(x, co) is a (translation invariant) random process such that a - 2  is not 
integrable. For instance, let us assume that a 2 is piecewise constant on 
integer intervals and that the distribution of o--2 on an interval is in the 
domain of attraction of a stable law of order a :  P(cr -2 )~c / ( f f -2 )  !+a for 
small ~ with 0 < a < 1. 

Then x -1/a ~ or(y, co)-2dy converges in law to a stable law of order a 
and so X-1/a-JM(X).  This provides the diffusion exponent dw = 1 + l / a  
and the behavior of X + ( t ) ~  t a/~ +ay. Thus, P(0, E) behaves like E -~/~ +a 
and by Tauberian theorem we get P(O, t ) ~  t a/~ +a. Furthermore, the cutoff 
term in P(x, E) can be estimated by noticing that E 1/2 + a/X+ x (1/E) is now 
an averaging random variable; thus, the cutoff term in P(x, E) should 
behave (by the ergodic theorem) like exp(-xEa/l+a),  which in turn 
corresponds to a cutoff term exp ( - x l+~ / t  ~) for P(x, t). 

3.3. D i f fus ion in a Random Potent ia l  

We now go to another random model the random walk in a random 
medium, corresponding to the process 

dX= -dV(X) /dx  dt + dB (27) 

V is a random potential. This kind of system has been studied, for instance, 
in refs. 5-7 and 9. Sinai (6) studies a discrete version of (27) where V is a 
random walk. He proves that X(t)/lnZt converges in law to a random 
variable depending 0nly on V and t. This result has been adapted to the 
continuous version by Brox (v). Kesten et alJ 5) study the asymmetric models 
(with nonzero mean drift). In the following, we first restrict ourselves to the 
case without mean drift (where the law of V is even in V), but the further 
discussion can be done in the same way in the general case. Bouchaud 
et al. 0) consider the case C7) where V is a Brownian motion in x and show 
that the averaged (over V) probability transition P(0, 0, t) behaves as 

(P(0,  0, t ) )  = C/ln 2 t (28) 

Using results of Section 2, we will discuss the probabilistic meaning of 
this latter result. In particular, we will show that P(0, 0, t) cannot be 
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characterized by its mean value, and we will give phenomenological laws 
for this quantity. 

For general V, the change of variables 

dy = exp[ V(x)] dx (29) 

provides for Y an It6 diffusion d Y = a ( Y )  dB, where a(y)=exp[V(x)].  
Results of Section 2 can be readily expressed in the x variable 

lit P(O, s) ds ~ inf(Y+, Y -  )/t (30) 

where Y+(t)=SX+dx exp V(x), and, as previously, X+(t) [ X- ( t ) ]  is the 
positive (negative) solution of 

M ( X ) =  dxexp V(x) dx' exp - V ( x ' ) = t  (31) 

First, let us remark that if V is a stationary process such that (exp V) is 
finite, by the ergodic theorem we have 

M(X +) ~ X+2(exp V) (exp - V) (32) 

This indicates that the diffusion is normal, with a diffusion coefficient 

a ~  2 = (exp V) (exp - V) 

Let us suppose from now on that V is a Brownian process in x. As 
above, we only provide heuristic ideas in order to obtain the main features 
of this diffusion. These ideas can be made more precise using the properties 
of the "depressions" introduced in ref. 7. As V is unbounded, the integrals 
determining M and Y are dominated by the largest values of the exponen- 
tials. Then, around an extremum of V, the behavior of V(x) does not 
depend on the total integration range X +, nor on the value of this 
extremum. Thus, we do not get any "prefactor" and the typical behavior of 
Y and M is 

Y(X),.~exp[ Sup V(x)] (33) 
X > . x > O  

Similarly, 

M(X) ,.~ exp[ Sup V(x) - V(x0)] (34) 
X > x > x o > O  
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That is, M(X) is determined by the "depressions ''~7) in [0, X]. Then, we 
can rewrite (30) 

fs P(O, s) ds/t ~ t" 1 (35) 

where 

= Min(~/+, q - ) 

t/+ = Sup V(x)/ Sup 
X + > x > 0  X + > x > x 0 > 0  

~/- = Sup V(x)/ Sup 
X -  < x < : O  X -  < x < x o < O  

V(x)- V(xo) 

V(x)-V(xo) 

We now argue that t/is a random variable (such that 0 < tt < 1) which has 
a law independent of t from the scaling properties of the Brownian motion. 
Then we get for the quantity P(0, t), which physically does not have to be 
averaged on the random potential, an extremely dispersed law. We could, 
for example, define an exponent 7 by 

= - ( l n  P) / ln  t =  (Min(t/+, t / - ) )  

We will not attempt here to compute V; let us only recover the result of 
Bouchaud et aL for the averaged quantity (P(0, t)).  This quantity is 
dominated by the behavior of the law of q near I/= 1. The probability that 
q > 1 - c with c small is just the probability that V(x), starting form 0, stays 
above - e V before reaching V at x = X, thus, the probability that the exit 
out of [-cV,  V] is achieved at V. Since V(x) is a martingale, this quantity 
is c. Taking now into account that t /= Min(q +, q -  ), we get 

P(0, s) ds/t ,,~ de de' e x p [ - l n  t Max(z, e')] ~ (ln t)-2 (36) 

In fact, a rigorous lower bound on (1/t~toP(O,s) ds) can be easily 
obtained by considering the above special samples of V without intro- 
ducing the exponent q. Indeed, for such samples the diffusion is trapped 
near the origin, which provides the lower bound. However, for typical 
samples, the trapping occurs at a distance d(t) about (In 02 from the origin 
and P(0, t) behaves like exp[-- V(d)] as the invariant measure is almost 
reached in the interval [0, d]. 

We now briefly study the typical Laplace transform P(x, E). The 
exponential factor occurring in Proposition 5, ~dz/Y+(1/E), can be 
estimated using the same techniques as above; this yields 

dz/Y+(1/e)= fodx (37) 
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where ~/ has exactly the same definition as above, but starting from x 
instead of 0. From the ergodic theorem and the above estimates of the law 
of r /near  0, we get 

oVdx E "(~) ~ X/In(l/E) (38) 

for X large with respect to (In t) 2 in order to ensure the convergence to the 
mean. This indicates a law of rare events (for large x) 

P(x, t) ~ e x p [ -  V(x) - x/ln t ] (39) 

The first term in (39) is the invariant measure and corresponds to a -2 in 
Proposition 5 multiplied by the Jacobian of the change of variable (29). 
Notice that the obtained scaling is not the natural one x /0n  0 2 �9 This comes 
from the fact that the convergence to the mean in (38) occurs on a scale 
much larger than (In 0 2 . 

Furthermore, if one adds to V(x) in (27) a constant drift # (which is 
the case in refs. 59), the same fluctuations occur for P(0, t). Bouchaud 
et aL (9) show that (P(0,  0, t ) ) ~ t  -~ even if # <  1. On the other hand, 
P(0, 0, t) is almost surely integrable with respect to t, as can be seen from 
Remark 2 after Proposition 6, by noticing that y(x) defined by 

dy = exp [ V(x) - #x] dx 

is almost surely bounded (by the strong law of large numbers). 
We conclude this section by noting that the same analysis can be done 

if V(x) is not a Brownian motion. Modifications then arise from the 
behavior of Y(X) in which prefactors can occur. 
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